Navigation pattern extraction from AIS trajectory big data via topic model

Author:

Fujino Iwao,Claramunt Christophe

Abstract

Abstract This paper introduces a novel approach for extracting vessel navigation patterns from very large automatic identification system (AIS) trajectory big data. AIS trajectory data records are first converted to a series of code documents using vector quantisation, such as k-means and PQk-means algorithms, whose performance is evaluated in terms of precision and computational time. Therefore, a topic model is applied to these code documents from which vessels’ navigation patterns are extracted and identified. The potential of the proposed approach is illustrated by several experiments conducted with a practical AIS dataset in a region of North West France. These experimental results show that the proposed approach is highly appropriate for mining AIS trajectory big data and outperforms common DBSCAN algorithms and Gaussian mixture models.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference33 articles.

1. Commission of the European Communities. (2008). Common position adopted by the Council with a view to the adoption of a Directive of the European Parliament and of the Council amending Directive 2002/59/EC establishing a Community vessel traffic monitoring and information system, COM (2008) 310 final 2005/0239(COD)

2. Brussels, Belgium, 11 June 2008. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0310:FIN:EN:pdf.

3. Product Quantization for Nearest Neighbor Search

4. Machine learning for vessel trajectories using compression, alignments and domain knowledge;Vries;Expert Systems with Applications,2012

5. Matsui, Y. , Ogaki, K. , Yamasaki, T. and Aizawa, K. (2017). PQk-means: Billion-Scale Clustering for Product-Quantised Codes. In: Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, CA: ACM Computer Society, 1725–1733.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3