Detection of Spoofing Attack using Machine Learning based on Multi-Layer Neural Network in Single-Frequency GPS Receivers

Author:

Shafiee E.,Mosavi M. R.,Moazedi M.

Abstract

The importance of the Global Positioning System (GPS) and related electronic systems continues to increase in a range of environmental, engineering and navigation applications. However, civilian GPS signals are vulnerable to Radio Frequency (RF) interference. Spoofing is an intentional intervention that aims to force a GPS receiver to acquire and track invalid navigation data. Analysis of spoofing and authentic signal patterns represents the differences as phase, energy and imaginary components of the signal. In this paper, early-late phase, delta, and signal level as the three main features are extracted from the correlation output of the tracking loop. Using these features, spoofing detection can be performed by exploiting conventional machine learning algorithms such as K-Nearest Neighbourhood (KNN) and naive Bayesian classifier. A Neural Network (NN) as a learning machine is a modern computational method for collecting the required knowledge and predicting the output values in complicated systems. This paper presents a new approach for GPS spoofing detection based on multi-layer NN whose inputs are indices of features. Simulation results on a software GPS receiver showed adequate detection accuracy was obtained from NN with a short detection time.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference32 articles.

1. Multi-test Detection and Protection Algorithm Against Spoofing Attacks on GNSS Receivers;Jovanovic;IEEE Position, Location and Navigation Symposium,2014

2. Solving the Problem of the K Parameter in the KNN Classifier using an Ensemble Learning Approach;Hassanat;International Journal of Computer Science and Information Security,2014

3. An Evaluation of the Vestigial Signal Defense for Civil GPS Anti-Spoofing;Wesson;The 24th International Technical Meeting of the Satellite Division of the Institute of Navigation,2011

4. Classification of GPS Satellites Using Improved Back Propagation Training Algorithms

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3