Derivative-free Nonlinear Version of Extended Recursive Three-step Filter for State and Parameter Estimation during Mars Entry

Author:

Xiao Mengli,Zhang Yongbo,Fu Huimin,Wang Zhihua

Abstract

Parameter uncertainties which may lead to divergence of traditional Kalman filters during Mars entry are investigated in this paper. To achieve high precision navigation, a Derivative-free Nonlinear version of an Extended Recursive Three-Step Filter (DNERTSF) is introduced, which suits nonlinear systems with arbitrary parameter uncertainties. A DNERTSF can estimate the state and the parameters simultaneously, and Jacobian and Hessian calculations are not necessary for this filter. Considering the uncertainties in atmosphere density, ballistic coefficient and lift-to-drag ratio, a numerical simulation of Mars entry navigation is carried out. Compared with the standard Unscented Kalman Filter (UKF), DNERTSF can effectively reduce the adverse effects of parameter uncertainties and achieve a high navigation accuracy performance, keeping position and velocity estimation errors at a very low level. In all, the DNERTSF in this paper shows good advantages for Mars entry navigation, providing a possible application for a future Mars pinpoint landing.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference26 articles.

1. Wells G.W. , Lafleur J.M. , Verges A. , Manyapu K. , Christan J. , Lewis C. and Braun R. (2006). Entry descent and landing challenges of human Mars exploration. 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado.

2. Mars Entry Navigation With Uncertain Parameters Based on Desensitized Extended Kalman Filter

3. The unscented Kalman filter for nonlinear estimation

4. Mars entry navigation from EKF processing of beacon data

5. Peng Y. (2011). Innovative navigation guidance and control technology for Mars entry descent and landing. Master thesis, Nanjing University of Aeronautics and Astronautics, Nanjing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3