Maritime Head-Up Display: A Preliminary Evaluation

Author:

Holder Eric,Pecota Samuel R.

Abstract

A major disadvantage of nearly every marine electronic navigation device introduced to date is the necessity for the navigator to turn his or her attention away from the view outside the bridge windows, even momentarily. Indeed, the uncomfortable feeling experienced by seasoned mariners that this ‘head down’ posture creates has led many to be initially reluctant to adopt some marine electronic devices (radar, ARPA, ECDIS, to name a few) that have proven their worth over time as useful, even vital navigational aids. Unfortunately, the use of such equipment has always required the marine navigator to leave behind the real world perspective view and enter an unnatural, two-dimensional plan view of the area surrounding the vessel. Mariners have accepted this type of view by necessity rather than by choice. That may be about to change. Advances in technology and a proven track record of performance benefits from Head-Up Display (or HUD) information in the aviation field have made it possible to consider if such a device would be useful in a maritime context. Accordingly, the authors of this paper conducted a preliminary evaluation to examine empirically what the effects of providing this same type of head-up information would be on marine navigation performance. A series of tests were conducted in the California Maritime Academy's advanced simulation facilities utilizing a full-mission simulator, a laptop-based HUD prototype, a projector, and student participants from an experimental undergraduate course entitled e-Navigation. The goals were to: 1) define the operational requirements and concept of operations for a maritime HUD system; 2) identify essential information, risks, and concerns; and 3) examine performance variations by conditions (environmental, vessel, crew) and tasks. The results indicate great potential for a maritime HUD system, especially for improving situational awareness in low visibility conditions, confined waters, and for vessels where information changes rapidly (i.e., high speed vessels). The results also suggest that there are some standard information requirements across situations that could be augmented with task and vessel specific information.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference14 articles.

1. Comparing Pilots' Taxi Performance, Situation Awareness and Workload Using Command-Guidance, Situation-Guidance and Hybrid Head-Up Display Symbologies

2. Head-up Display. (n.d.). Retrieved July 12, 2009, from http://en.wikipedia.org/wiki/Head_up_display.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3