Signal design and performance analysis for LEO high dynamic navigation application

Author:

Wang Lei,Che Jibin,Chen Haoyan

Abstract

Abstract With the development of GNSS (Global Navigation Satellite System), LEO (Low Earth Orbit) systems are adopted to enhance the system performance of GNSS. The signal Doppler of the LEO satellite is seven to nine times that of GNSS signals, which benefits positioning performance but leads to high acquisition complexity. This paper proposes the combination of a CSS (Chirp Spread Spectrum) marker and the main body of traditional modulation methods for high dynamic application. The acquisition calculation complexity and mean acquisition time of the proposed signal are analysed and compared with the traditional signal. The result shows that the acquisition calculation complexity is just 26 % of the traditional signal under the parameters considered and the mean acquisition time of the proposed signal is also lower than the traditional signal. Hence, the proposed signal is able to decrease the mean acquisition time of the receiver under the constraint of calculation complexity and should be adopted for LEO high dynamic application.

Publisher

Cambridge University Press (CUP)

Reference19 articles.

1. Frequency Shift Chirp Modulation: The LoRa Modulation

2. IS-GPS-800 (2023). NAVSTAR GPS Space Segment/ User Segment L1C Interfaces. Available at https://www.gps.gov (accessed January 2023).

3. Enge, P. , Bart, F. , Jeff, B. , David, W. , Greg, G. and David, L. (2012). Orbital Diversity for Satellite Navigation. Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, TN, 3834–3846.

4. Initial Assessment of the LEO Based Navigation Signal Augmentation System from Luojia-1A Satellite

5. A Novel Algorithm for the Weak GPS Signals Acquisition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3