Abstract
AbstractEstimating the collision frequency of ships (F) is important for assessing collision risk on waterways. To date, F has been estimated as the product of the number of collision candidates $({N_{a }})$ and the causation probability $({P_c})$: $F = {N_{a}} \cdot {P_c}$, where ${N_{a }}$ represents the number of collisions that occur when related ships continue on course with no intervention, and ${P_c}$ is the probability that collision avoidance fails. Fujii developed a general method and Pedersen formulated it to estimate ${N_{a }}$ in an intersectional area. Their method is generally called ‘the geometric method’ because collision candidates are estimated only from the geometric relationship between two ships. The method has been used in many projects to estimate F in waterways; however, its use should be limited to intersection angles ranging from 10° to 170°. This paper presents a method, statistically verified by computer simulation, that can be used at all intersection angles to overcome this limitation. Moreover, it demonstrates strong agreement with Pedersen's method at intersection angles of 10° to 170°.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Reference14 articles.
1. II—The Probability of Stranding
2. Review and application of ship collision and grounding analysis procedures
3. Silveira, P. , Teixeira, A. P. and Soares, C. G. (2014). Assessment of Ship Collision Estimation Methods Using AIS Data. Proceedings of 2nd International Conference on Maritime Technology and Engineering (MARTECH 2014), Lisbon, Portugal.
4. COWI. (2008). Risk Analysis of Sea Traffic in the Area around Bornholm. COWI for Søfartsstyrelsen (online). Available at: https://www.yumpu.com/en/document/read/35601367/risk-analysis-of-sea-traffic-in-the-area-around-bornholm-2008-vtt. Accessed 1 March 2021.
5. Quantitative Ship Collision Frequency Estimation Models: A Review