Vessel Track Recovery With Incomplete AIS Data Using Tensor CANDECOM/PARAFAC Decomposition

Author:

Liu Changqing,Chen Xiaoqian

Abstract

Global analysis of vessel motion patterns has become possible using satellite-based Automatic Identification System (AIS). The concept of space-based AIS needs several satellites to provide complete coverage and high detection probability. However, in early development stages, often only one satellite is launched and due to its limitation of orbit and footprint, received AIS messages are discontinuous. In this paper, we have analysed real AIS data obtained by satellite to form a global maritime surveillance picture. Furthermore, we propose to take advantage of the tensor CANDECOMP/PARAFAC (CP) decomposition to analyse three mode characteristics of the data, which are location, vessel and time. For incomplete data, we exploit the link prediction technique based on tensor factorisation to recover vessel tracks in a specified area. A variant of temporal link prediction based on CP is presented. We illustrate the usefulness of exploiting the three-mode structure of AIS data by simulation, and demonstrate that the track recovery result has acceptable precision.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3