A high-precision and efficient algorithm for space-based ADS-B signal separation

Author:

Bi Yan,Wu Renbiao,Jia Qiongqiong

Abstract

Abstract Space-based automatic dependent surveillance-broadcast (ADS-B) receivers can cover thousands of aircraft, each transmitting 6 ⋅ 2 signals per second. As a result, ADS-B signals are very prone to overlap. When the number of aircraft covered by a receiver reaches 3,000, about 90 % of the signals will be overlapping. Overlapped signals can reduce the decoding accuracy of receivers, so that aircraft information cannot be accurately transmitted to the air traffic control (ATC) surveillance system, hence threatening aviation flight safety. It is necessary to propose signal separation algorithms for space-based ADS-B systems. An orthogonal projection linear constrained minimum variance (OPLCMV) algorithm is proposed, which can separate two signals simultaneously based on the linearly constrained minimum variance algorithm by exploiting the characteristics of overlapped signals. Compared with the state-of-the-art extended projection algorithm and the fast independent component analysis algorithm, the OPLCMV method has a higher decoding accuracy for multiple overlapping signals with a small direction difference of arrival or frequency shift. Moreover, the OPLCMV algorithm has a low computational complexity when the number of overlapped signal sources is less than seven.

Funder

Tianjin Municipal Education Commission

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference33 articles.

1. Yu, S. , Chen, L. , Li, S. and Li, L. (2018). Separation of Space-Based ADS-B Signals with Single Channel for Small Satellite. Proceedings of the 2018 IEEE 3rd International Conference on Signal and Image Processing, Shenzhen, China.

2. Wu, S. , Chen, W. and Chao, C. (2016). The STU-2 CubeSat Mission and in-Orbit Test Results. Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites, Logan, UT.

3. Aireon surveillance of the globe via satellite

4. Adaptive Multi-beamforming for Space-based ADS-B

5. Separation of SSR Signals by Array Processing in Multilateration Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3