High-resolution airborne observations of sea-ice pressure ridge sail height

Author:

Duncan K.,Farrell S. L.ORCID,Connor L. N.,Richter-Menge J.ORCID,Hutchings J. K.,Dominguez R.

Abstract

ABSTRACTPressure ridges impact the mass, energy and momentum budgets of the sea-ice cover and present an obstacle to transportation through ice-infested waters. Quantifying ridge characteristics is important for understanding total sea-ice mass and for improving the representation of sea-ice dynamics in high-resolution models. Multi-sensor measurements collected during annual Operation IceBridge (OIB) airborne surveys of the Arctic provide new opportunities to assess the sea ice at the end of winter. We present a new methodology to derive ridge sail height from high-resolution OIB Digital Mapping System (DMS) visible imagery. We assess the efficacy of the methodology by mapping the full sail height distribution along 12 pressure ridges in the western and central Arctic. Comparisons against coincident Airborne Topographic Mapper (ATM) elevation anomalies are used to demonstrate the methodology and evaluate DMS-derived sail heights. Sail heights and elevation anomalies were correlated at 0.81 or above. On average mean and maximum sail height agreed with ATM elevation to within 0.11 and 0.49 m, respectively. Of the ridges mapped, mean sail height ranged from 0.99 to 2.16 m, while maximum sail height ranged from 2.1 to 4.8 m. DMS also delivered higher sampling along ridge crests than coincident ATM data.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference30 articles.

1. Martin T (2007) Arctic Sea Ice Dynamics: Drift and Ridging in Numerical Models and Observations. PhD Thesis, University of Bremen

2. Sea-ice topography of the Arctic Ocean in the region 70° W to 25° E

3. Arctic sea ice conditions in spring 2009-2013 prior to melt

4. A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3