Author:
SHEN GUOZHEN,YUAN JIACHEN
Abstract
AbstractFor a set x, let ${\cal S}\left( x \right)$ be the set of all permutations of x. We prove in ZF (without the axiom of choice) several results concerning this notion, among which are the following:(1) For all sets x such that ${\cal S}\left( x \right)$ is Dedekind infinite, $\left| {{{\cal S}_{{\rm{fin}}}}\left( x \right)} \right| < \left| {{\cal S}\left( x \right)} \right|$ and there are no finite-to-one functions from ${\cal S}\left( x \right)$ into ${{\cal S}_{{\rm{fin}}}}\left( x \right)$, where ${{\cal S}_{{\rm{fin}}}}\left( x \right)$ denotes the set of all permutations of x which move only finitely many elements.(2) For all sets x such that ${\cal S}\left( x \right)$ is Dedekind infinite, $\left| {{\rm{seq}}\left( x \right)} \right| < \left| {{\cal S}\left( x \right)} \right|$ and there are no finite-to-one functions from ${\cal S}\left( x \right)$ into seq (x), where seq (x) denotes the set of all finite sequences of elements of x.(3) For all infinite sets x such that there exists a permutation of x without fixed points, there are no finite-to-one functions from ${\cal S}\left( x \right)$ into x.(4) For all sets x, $|{[x]^2}| < \left| {{\cal S}\left( x \right)} \right|$.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献