Abstract
AbstractUsing a technique developed by Coquand and Hofmann [3] we verify that adding the analytical form MP1: $\forall \alpha (\neg \neg \exists {\rm{x}}\alpha ({\rm{x}}) = 0 \to \exists {\rm{x}}\alpha ({\rm{x}}) = 0)$ of Markov’s Principle does not increase the class of ${\rm{\Pi }}_2^0$ formulas provable in Kleene and Vesley’s formal system for intuitionistic analysis, or in subsystems obtained by omitting or restricting various axiom schemas in specified ways.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献