Greedy approximation

Author:

Temlyakov V. N.

Abstract

In this survey we discuss properties of specific methods of approximation that belong to a family of greedy approximation methods (greedy algorithms). It is now well understood that we need to study nonlinear sparse representations in order to significantly increase our ability to process (compress, denoise,etc.) large data sets. Sparse representations of a function are not only a powerful analytic tool but they are utilized in many application areas such as image/signal processing and numerical computation. The key to finding sparse representations is the concept ofm-term approximation of the target function by the elements of a given system of functions (dictionary). The fundamental question is how to construct good methods (algorithms) of approximation. Recent results have established that greedy-type algorithms are suitable methods of nonlinear approximation in bothm-term approximation with regard to bases, andm-term approximation with regard to redundant systems. It turns out that there is one fundamental principle that allows us to build good algorithms, both for arbitrary redundant systems and for very simple well-structured bases, such as the Haar basis. This principle is the use of a greedy step in searching for a new element to be added to a givenm-term approximant.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refining Heisenberg’s principle: A greedy approximation of step functions with triangular waveform dictionaries;Mathematics and Computers in Simulation;2024-11

2. Classifier-dependent feature selection via greedy methods;Statistics and Computing;2024-07-06

3. A Reduced Conjugate Gradient Basis Method for Fractional Diffusion;SIAM Journal on Scientific Computing;2024-04-18

4. The learning performance of the weak rescaled pure greedy algorithms;Journal of Inequalities and Applications;2024-03-04

5. Greedy-like bases for sequences with gaps;Banach Journal of Mathematical Analysis;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3