Pericarp-mediated chemical dormancy controls the fruit germination of the invasive hoary cress (Lepidium draba), but not of hairy whitetop (Lepidium appelianum)

Author:

Mohammed SaidORCID,Turečková VeronikaORCID,Tarkowská DanušeORCID,Strnad MiroslavORCID,Mummenhoff KlausORCID,Leubner-Metzger GerhardORCID

Abstract

AbstractThis study provides a comparative analysis of the dormancy and germination mechanisms of the indehiscent fruits of hoary cress (Lepidium drabaL.) and hairy whitetop (Lepidium appelianumAl-Shehbaz), two invasive weeds of the Brassicaceae. Germination assays comparing isolated seeds (manually removed from the fruits) and intact indehiscent fruits showed that the isolated seeds are nondormant and provided full germination for both species. In contrast to this, the species differed in the germination properties of their indehiscent fruits, in thatL. appelianumfruits were nondormant, while theL. drabafruit coat (pericarp) conferred a coat-imposed dormancy. The pericarp ofL. drabafresh fruit was water permeable, and neither mechanical scarification nor surface sterilization affected germination, supporting the concept that pericarp-mediated dormancy was not due to water impermeability or mechanical constraint. Washing ofL. drabafruits with water, afterripening (dry storage), and treatment with gibberellin (GA) stimulated the germination of this species, all of which are indicative of physiological dormancy. Analyses of endogenous abscisic acid (ABA) and GA levels combined with treatment experiments with wash water from fresh and afterripenedL. drabapericarps and with ABA dose–response quantification of germination revealed that ABA is a key component of a pericarp-mediated chemical dormancy in this species. Consistent with this, pericarp ABA levels decreased during afterripening and upon fruit washing, and isolated fresh or afterripened seeds did not differ in their ABA sensitivities. The possible roles of the ABA-mediated pericarp dormancy for the germination ecophysiology and weed management of these species are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3