Loss reduction on ultra high lift low-pressure turbine blades using selective roughness and wake unsteadiness

Author:

Howell R. J.,Roman K. M.

Abstract

This paper describes how it is possible to reduce the profile losses on ultra high lift low pressure (LP) turbine blade profiles with the application of selected surface roughness and wake unsteadiness. Over the past several years, an understanding of wake interactions with the suction surface boundary layer on LP turbines has allowed the design of blades with ever increasing levels of lift. Under steady flow conditions, ultra high lift profiles would have large (and possibly open) separation bubbles present on the suction side which result from the very high diffusion levels. The separation bubble losses produced by it are reduced when unsteady wake flows are present. However, LP turbine blades have now reached a level of loading and diffusion where profile losses can no longer be controlled by wake unsteadiness alone. The ultra high lift profiles investigated here were created by attaching a flap to the trailing edge of another blade in a linear cascade — the so called flap-test technique. The experimental set-up used in this investigation allows for the simulation of upstream wakes by using a moving bar system. Hotwire and hotfilm measurements were used to obtain information about the boundary-layer state on the suction surface of the blade as it evolved in time. Measurements were taken at a Reynolds numbers ranging between 100,000 and 210,000. Two types of ultra high lift profile were investigated; ultra high lift and extended ultra high lift, where the latter has 25% greater back surface diffusion as well as a 12% increase in lift compared to the former. Results revealed that distributed roughness reduced the size of the separation bubble with steady flow. When wakes were present, the distributed roughness amplified disturbances in the boundary layer allowing for more rapid wake induced transition to take place, which tended to eliminate the separation bubble under the wake. The extended ultra high lift profile generated only slightly higher losses than the original ultra high lift profile, but more importantly it generated 12% greater lift.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3