Analytical Volterra-based models for nonlinear low order flight dynamics approximation systems

Author:

Omran A.,Newman B.

Abstract

AbstractAnalytical methodology is presented to conduct dynamical assembly of simple low order nonlinear responses for system synthesis and prediction using Volterra theory. The procedure is set forth generically and then applied to several atmospheric flight examples. A two-term truncated Volterra series, which is enough to capture the quadratic and bilinear nonlinearities, is developed for first and second order generalised nonlinear single degree of freedom systems. The resultant models are given in the form of first and second kernels. A parametric study of the influence of each linear and nonlinear term on kernel structures is investigated. A step input is then employed to quantify and qualify the nonlinear response characteristics. Uniaxial surge and pitch motions are presented as examples of the low order flight dynamic systems. These examples show the ability of the proposed analytical Volterra-based models to predict, understand, and analyse the nonlinear aircraft behaviour beyond that attainable by linear-based models. The proposed analytical Volterra-based model offers an efficient nonlinear preliminary design tool in qualifying the aircraft responses before computer simulation is available or invoked.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3