2D numerical study of circular synthetic jets in quiescent flows

Author:

Tang H.,Zhong S.

Abstract

Abstract2D numerical simulations of flows generated by a synthetic jet actuator with a circular orifice were conducted at two different diaphragm displacement settings, one representing a typical laminar case and the other a fully turbulent case. The flow in the cavity was included in the computation in order to provide more accurate predictions. A velocity boundary condition was applied at the neutral position of the diaphragm to account for its temporal deformation. Comparisons were made between the computational results and existing PIV and hot-wire data in terms of the time sequence of the velocity vector field, velocity variations in space and with time. It is found that computational results for the laminar case agree well with the experimental data. Four turbulent models were tested for the fully turbulent case. It was found that the predictions using the RNG κ-ε and Standard k-ε models were reasonably close to the experimental data. This initial study has produced some encouraging evidence for the capacity of FLUENT in simulating the key features of synthetic jets.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3