Fuel sensitivity analyses for active drag reduction systems

Author:

Young T. M.

Abstract

Active drag reduction systems, such as hybrid laminar flow control (HLFC), have the potential for significant fuel savings; however, this is at the expense of an increase in aircraft weight and engine power off-take. A computer program – capable of accurately determining the trip fuel for a given mission profile – has been developed. The program was validated against manufacturer’s payload-range data, and then modified to emulate the installation of an active drag reduction system, by incorporating changes to the drag polars, specific fuel consumption (SFC) data and operating empty weight (OEW). Results of sensitivity studies are presented that enable the reduction in trip fuel to be determined for given changes inCD, SFC and OEW. The underlying assumption of linear independence of the three parameters is explored. The linearised method was observed to underestimate the fuel savings of the HLFC aircraft by approximately 0·6% compared to an analysis which took into account the coupling between the parameters. A mathematical relationship has been established to estimate the impact on cruise fuel burn arising from relative changes to the aircraft’s mass, lift-to-drag ratio and SFC.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference8 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introducing variance-based global sensitivity analysis for uncertainty enabled operational and economic aircraft technology assessment;Aerospace Science and Technology;2022-03

2. Trip Fuel Requirements and Estimation;Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations and Regulations;2017-11-03

3. Aerodynamic Drag and Its Reduction;Advanced Aircraft Design;2013-05-27

4. Influence of Offdesign Performance on Design Synthesis of Laminar Aircraft;Journal of Aircraft;2012-09

5. An investigation into potential fuel savings for 110–130 seat passenger transport aircraft due to the incorporation of natural laminar flow or hybrid laminar flow control on the engine nacelles;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2012-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3