Efficiency parameters for modern commercial aircraft

Author:

Nangia R. K.

Abstract

Abstract Currently, there is great emphasis, worldwide, on environmental issues. This will have an impact on civil aircraft design, manufacture and operation. Since the advent of the jet engine and swept wing aircraft, the trends have naturally tended towards greater productivity through increasing speed and payload. The cruise speed of conventional civil aircraft is unlikely to increase beyond current levels. Further increases in productivity are achieved by increasing payloads. This has led towards larger aircraft with the capability for increased ranges. It is shown that designing aircraft for longer ranges increases fuel burn significantly. A series of aircraft operational parameters have been analysed. Selected data and established trends for current and future aircraft are presented. The data has been interpreted into efficiency terms, relating payload, range, fuel consumed and a measure of unit costs. It is shown that ‘value’ (cost) and noise effective efficiencies decrease dramatically with increasing range. Environmental and economic considerations, in the future, may well demand greater efficiency in preference to productivity. One solution for long-range services is to use short-range hops. Another is via air-to-air refuelling. This will be addressed, in more detail, in a future paper.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference10 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid electric aircraft design with optimal power management;Aerospace Science and Technology;2024-11

2. Feeder routing for air-to-air refueling operations;European Journal of Operational Research;2023-01

3. Uçak Etkinliğinin Operasyonel ve Finansal Metrikler Açısından Analitik Olarak İncelenmesi;InTraders International Trade Academic Journal;2022-12-01

4. Conceptual Design of a Flying-V Aircraft Family;AIAA AVIATION 2022 Forum;2022-06-20

5. Reduction of the environmental impact of aviation via optimisation of aircraft size/range and flight network;IOP Conference Series: Materials Science and Engineering;2022-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3