Limited life engines for UAVs

Author:

Clark I. K.

Abstract

Abstract The ever expanding range of applications for unmanned air vehicles covers a wide variety of powerplant requirements. While many vehicles are high value assets and demand similar powerplant attributes to a conventional manned aircraft, there is an emerging requirement for powerplants which are designed to a limited life philosophy. This covers a range of applications: at the simplest level there are vehicles where the mission definition dictates that attrition rates will be high, for example low level reconnaissance, targeting or battle damage assessment, and the entire vehicle may only be expected to make a short number of missions. On the other hand there are applications where it may be more cost effective to remove the need for engine maintenance and to treat the powerplant as a disposable limited life unit. In general, the industry trend is towards the reduction of life cycle costs, and a significant emphasis is placed upon continuing to increase aero-engine component lives though novel design and improved manufacturing techniques. A limited life application calls for a different approach, as it may be that the powerplant has a life requirement of anywhere between 50 and 250 hours. This allows scope to explore areas of design and manufacture which would not be suitable for a ‘conventional’ engine and can lead to large reductions in engine cost. This paper seeks to identify the primary cost drivers for a small UAV powerplant in the 10kN thrust class, and to establish the relationships between cost, life and performance at both a whole engine and an individual component level. It also explores the feasibility of using new or unconventional designs and manufacturing methods, and presents a selection of examples.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ceramic engine considerations for future aerospace propulsion;Aircraft Engineering and Aerospace Technology;2012-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3