The performance of round synthetic jets in quiescent flow

Author:

Jabbal M.,Wu J.,Zhong S.

Abstract

AbstractPIV measurements in the near-field region of a jet flow emanating from a round synthetic jet actuator into quiescent air were conducted over a range of operating conditions. The primary purpose of this work was to investigate the nature of synthetic jets at different operating conditions and to examine the jet flow parameters that dictate the behaviour of synthetic jet actuators. The effects of varying diaphragm displacement and oscillatory frequency for fixed actuator geometry were studied. It was observed that the characteristics of synthetic jets are largely determined by the Reynolds number and stroke length. An increase in the former is observed to increase the strength of consecutive vortex rings that compose a synthetic jet, whereas an increase in the latter results in an increase in relative vortex ring spacing and for further increases in stroke length, shedding of secondary vortices. Correlations were also made between the operating parameters and the performance parameters most effective for flow control and which therefore determine the impact of a synthetic jet on an external flow. Relations of time-averaged dimensionless mass flux, momentum flux and circulation with the jet flow conditions were established and found to widely support an analytical performance prediction model described in this paper. It is anticipated that the experimental data obtained in this study will also contribute towards providing a PIV database for macro-scale synthetic jet actuators.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3