Spin induced aerodynamic flow conditions on full-scale aeroplane wing and horizontal tail surfaces

Author:

Hoff R. I.,Gratton G. B.

Abstract

Abstract The aerodynamic flow conditions on wings and tail surfaces due to the rotational motion of a spinning aeroplane have been investigated in a full-scale spin flight research programme at the Brunel Flight Safety Laboratory. The wing upper surface vortex has been visualised using smoke and tufts on the wing of a Slingsby Firefly. The flow structures on top of both wings, and on top of the horizontal tail surfaces, have also been studied on a Saab Safir. The development of these rotational flow effects has been related to the spin motion and the effect on the spin dynamics has been studied and discussed. Evidence suggests that the turbulent wake from the wing upper surface vortex impinges the tail of the aircraft during the spin entry. It is hypothesised that the turbulent flow structure on the outside upper wing surface is due to additional accelerations induced by the rotational motion of the aeroplane. Furthermore, the lightening in stick force during spin entry and the apparent increase in push force required for spin recovery corresponds to the observed change in flow condition on the horizontal tail. The difference in pressure on the upper and lower horizontal tail surfaces have been measured using differential pressure sensors, and the result corresponds both with the observed flow conditions and earlier research results from NASA.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference6 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3