Design and implementation of linear-quadratic-Gaussian stability augmentation autopilot for unmanned air vehicle

Author:

Lee C.-S.,Hsiao F.-B.,Jan S.-S.

Abstract

Abstract The linear-quadratic-Gaussian (LQG) control synthesis has the advantage of dealing with the uncertain linear systems disturbed by additive white Gaussian noise while having incomplete system state information available for control-loop feedback. This paper hence explores the feasibility of designing and implementing a stability augmentation autopilot for fixed-wing unmanned air vehicles using the LQG approach. The autopilot is composed of two independently designed LQG controllers which control the longitudinal and lateral motions of the aircraft respectively. The corresponding linear models are obtained through a system identification routine which makes use of the combination of two well-established identification methods, namely the subspace method and prediction error method. The two identification methods complement each other well and this paper shows that the proposed system identification scheme is capable of attaining satisfactory state-space models. A complete autopilot design procedure is devised and it is shown that the design process is simple and effective. Resulting longitudinal and lateral controllers are successfully verified in computer simulations and actual flight tests. The flight test results are presented in the paper and they are found to be consistent with the simulation results.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3