Author:
Wong W. S.,Moigne A. Le,Qin N.
Abstract
An Euler optimisation for a BWB configuration with winglets incorporating an array of three-dimensional shock control bumps is carried out by employing an efficient adjoint-based optimisation methodology. A high fidelity multi-block grid with over two million grid points is generated to resolve the shape of the 3D shock control bumps, the winglet as well as the overall BWB shape, which are parameterised by over 650 design variables. In order to perform such a large aerodynamic optimisation problem feasibly, the optimisation tools such as the flow solver and the adjoint solver have to be parallelised with a good parallel efficiency. This paper reports the parallel implementation efforts on the adjoint solver; especially on the calculation of the sensitivity derivatives, which has to be looped over the total number of design variables. Results from the optimisation of the wing master sections, winglet aerofoil sections and the three dimensional bumps indicate a significant improvement regarding the aerodynamic performance against the baseline geometry for the given planform layout of the aircraft.
Publisher
Cambridge University Press (CUP)
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献