Aerodynamic design and experimental modelling of an innovative supersonic three-dimensional air-intake

Author:

Gounko Yu.P.,Mazhul I. I.,Kharitonov A. M.

Abstract

AbstractAerodynamic design of an innovative supersonic three-dimensional air-intake including a starting device has been carried out. The intake concept is based on the use of an external compression ramp in the form of a caret waverider. In a design flow regime, this ramp generates a plane oblique shock wave lying on its swept leading-edges and a subsequent two-dimensional isentropic compression wave. The intake starting is provided with a device special flaps of which in the throat are opened slightly in order to enlarge it and to form here both longitudinal and cross slots for air bleed and boundary-layer diversion. The same device can also serve for regulation of intake operating regimes depending on the flight velocity. The experimental model intake with a design Mach numberMD= 2 has been developed and tested at flow Mach numbers 1·5, 1·75, and 2·0 in the T-313 supersonic wind tunnel based at ITAM. Flow patterns about the intake have been observed, and flow parameters characterising the intake performance have been measured. The experimental results obtained have confirmed the workability of the starting/regulating device; the data on the efficiency of the model intake have demonstrated its good characteristics in terms of the total pressure recovery.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3