Starting characteristics of a rectangular supersonic air-intake with cowl deflection

Author:

Das S.,Prasad J. K.

Abstract

Abstract Experimental and computational investigations have been made to obtain the details of the flow field of a supersonic air-intake with different cowl deflection angles and back pressures at the exit. The flow field obtained with an inviscid computation on the basic configuration, designed for Mach 2·2, shows starting behaviour whereas computation with k-ω turbulence model and experiments indicate unstart characteristics. Both experiments and computations indicate that provision of a small angle at the cowl tip leads to start of the same intake and also improves it’s performance. Results obtained with cowl deflection shows a better performance in comparison to performance achieved with a basic intake and with a bleed of 2·8%. Sustainable back pressure could be obtained through the computations made at different back pressures for different cowl deflection angles. Overall results suggest that provision of small cowl deflection angle itself leads to improvement in performance achieved in comparison to a bleed of 2·8%, even with back pressure at the exit.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3