Repetitively enhanced neural networks method for complex engineering design optimisation problems

Author:

Van Nguyen N.,Lee J-W.,Tyan M.,Kim S.

Abstract

Abstract A Repetitively Enhanced Neural Networks (RENN) method is developed and presented for complex and implicit engineering design problems. The enhanced neural networks module constructs an accurate surrogate model and avoids over-fitting during neural networks training from supervised learning data. The optimiser is executed by the enhanced neural networks models to seek a tentative optimum point. It is repetitively added into the supervised learning data set to refine the surfaces until the RENN tolerance is reached. The RENN method demonstrates the effectiveness and feasibility for a 2D highly non-linear numerical example and the structure design of a two-member frame reaching a convergent solution at 10 and 15 iterations at the maximum error of 1% when compared with the exact solution. Then, the RENN method is applied for a long endurance unmanned aerial vehicle (UAV) aerofoil design optimisation. A Class/Shape function transformation (CST) geometry parameterisation method represents an accurate UAV aerofoil with ten geometry design variables. The high-fidelity analysis solver with structured mesh is used for a UAV aerofoil design problem. Using the RENN method, an optimal UAV aerofoil is obtained using 88 high fidelity evaluations at an error of 1·24%. The process reduces the computational time by 81·2% compared with the full high fidelity model. The optimal aerofoil shows a drag reduction of 10·8% in the cruise condition and an improvement in the maximum lift coefficient and stall angle-of-attack when compared with the baseline AG24 aerofoil.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3