Author:
Fletcher T. M.,Brown R. E.
Abstract
Abstract
The mutual interaction between the main rotor and tail rotor wakes is central to some of the most problematic dynamic phenomena experienced by helicopters. Yet achieving the ability to model the growth and propagation of helicopter rotor wakes with sufficient realism to capture the details of this interaction has been a significant challenge to rotorcraft aerodynamicists for many decades. A novel computational fluid dynamics code tailored specifically for rotorcraft applications, the vorticity transport model, has been used to simulate the interaction of the rotors of a helicopter with a single main rotor and tail rotor in both hover and low-speed quartering flight, and with the tail rotor rotating both top-forward and top-aft. The simulations indicate a significant level of unsteadiness in the performance of both main and tail rotors, especially in quartering flight, and a sensitivity to the direction of rotation of the tail rotor. Although the model thus captures behaviour that is similar to that observed in practice, the challenge still remains to integrate the information from high fidelity simulations such as these into routine calculations of the flight dynamics of helicopters.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献