Aerodynamic shape optimisation of a proprotor and its validation by means of CFD and experiments

Author:

Droandi G.,Gibertini G.

Abstract

AbstractThe aerodynamic shape design of a proprotor for a tiltrotor aircraft is a very complex and demanding task because it has to combine good hovering capabilities with high propeller efficiency. The aim of the present work is to describe a two-level procedure and its results for the aerodynamic shape design of a new rotor blade for a high-performance tiltwing tiltrotor aircraft taking into account the most important flight conditions in which the aircraft can operate. Span-wise distributions of twist, chord and aerofoil were chosen making use of a multi-objective genetic optimiser that worked on three objectives simultaneously. A non-linear sweep angle distribution along the blade was designed to reduce the power losses due to compressibility effects during axial flight at high speed. During the optimisation process, the aerodynamic performance of the blade was evaluated with a classical two-dimensional strip theory solver. The optimised blade was than analysed by means of a compressible Navier-Stokes solver and calculations were validated comparing numerical results with experimental data obtained from wind-tunnel tests of a scaled model of the proprotor.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference43 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3