Author:
Guillaume M.,Gehri A.,Stephani P.,Vos J. B.,Mandanis G.
Abstract
Abstract
The Swiss Airforce is operating F/A-18C/D Aircraft since 1997. Since the aircraft’s structural design is different from the version operated by the US Navy it was necessary to carry out a structural integrity study (ASIP) which was done by The Boeing Company in St. Louis. To validate this study a full scale fatigue test facility was build at RUAG and operated from 2003 to 2005. When operating this facility difficulties were encountered with the aerodynamic loads data provided by Boeing (insufficient, not well documented, questionable data). As a result RUAG looked for alternative methods to provide the aerodynamic loads, and a large investment was made in the development of a Computational Fluid Dynamics (CFD) tool. The Navier Stokes Multi Block (NSMB) solver, which was developed in an international collaboration, was adopted. In a first phase the code was validated by comparing results of CFD calculations with wind-tunnel results, results from literature and flight test data results. In the second phase, discussed in this paper, a Fluid Structure Interaction (FSI) tool was developed to permit unsteady aero-elastic simulations. Particular attention is focused on the vertical tail since this component of the F/A-18 fighter is very sensitive to fatigue due to unsteady loads generated by buffeting phenomena.
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献