Damage arrest design approach using stitched composites

Author:

Velicki A.,Thrash P.

Abstract

Abstract Although the deployment of carbon fibre structural components has enjoyed wide success on smaller aircraft, their acceptance on larger transport airframes is less sanguine – especially in the case of primary structure applications where the increasing out of plane loads found on the larger airframes have exposed the weak interlaminar properties of the layered material system. This has led to an overreliance on mechanical attachments to suppress these through thickness failures, which ultimately degrades structural performance and increases manufacturing costs. Until these resin dominated failure modes can be dealt with more effectively, without adversely affecting the in plane properties of the laminate, the true weight-savings potential afforded by carbon fibre material systems will be difficult to attain. This paper describes how researchers at NASA-LaRC and The Boeing Company are working to develop a next generation stitched composite design solution that addresses the fundamental challenges in achieving improved structural performance and reduced fabrication costs for large carbon fibre airframe structures.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference2 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3