Sub boundary-layer vortex generators for the control of shock induced separation

Author:

Cohen G. S.,Motallebi F.

Abstract

Abstract The results of an investigation into the effects that sub-boundary layer vortex generators (SBVGs) have on reducing normal shock-induced turbulent boundary-layer separation are presented. The freestream Mach number and Reynolds number were M = 1·45 and 15·9 × 106/m, respectively. Total pressure profiles, static pressure distributions, surface total pressure distributions, oil flow visualisation and Schlieren photographs were used in the results analysis. The effects of SBVG height, lateral spacing and location upstream of the shock were investigated. A novel curved shape SBVG was also evaluated and comparisons against the conventional flat vane type were made. The results show that in all but two cases, separation was completely eliminated. As expected, the largest SBVGs with height, h = 55%δ, provided the greatest pressure recovery and maximum mixing. However, the shock pressure rise was highest for this case. The experiments showed that the mid height SBVG array with the largest spacing provided similar results to the SBVG array with the largest height. Reducing the distance to shock to 10δ upstream also showed some improvement over the SBVG position of 18δ upstream. It was suggested that total elimination of the separated region may not be required to achieve a balance of improved static pressure recovery whilst minimising the pressure rise through the shock. The effect of curving the SBVGs provided an improved near wall mixing with an improved static and surface total pressure recovery downstream of the separation line. The optimum SBVG for the current flow conditions was found to be the curved vanes of h = 40%δ, with the largest spacing, located at 18δ upstream of the shock. Overall, it was apparent from the results that in comparison to larger vortex generators with a height comparable to δ, for SBVGs the parameters involved become more important in order to obtain the highest degree of mixing from a given SBVG configuration.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Investigation of Sidewall Interference Control on Large Thickness Wind Turbine Airfoil;Computational and Experimental Simulations in Engineering;2023-12-05

2. Numerical simulation of mini-air-jet vortex generators on a supercritical wing in transonic flow and the effect of temperature on its aerodynamic performance;Aerospace Systems;2023-05-25

3. Experimental Investigation of Flow Control of Shock-Induced Separation Using the Supersonic Sweeping Jet;Transactions of the Korean Society of Mechanical Engineers - B;2021-06-30

4. Comparison of Bleed and Micro-Vortex Generator Effects on Supersonic Boundary-Layers;50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2012-01-09

5. Characterization of Micro-Vortex Generators in Supersonic Flows;49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2011-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3