Water injection pre-compressor cooling assist space access

Author:

Mehta U.,Bowles J.,Melton J.,Huynh L.,Hagseth P.

Abstract

AbstractAdvances in space activity are linked to reductions in launch cost. Air-breathing propulsion-assisted flight systems offer the potential for revolutionary change of the space operations paradigm. Horizontal launch of a space-access system provides mission flexibility, responsiveness, and affordability. One way to reduce launch cost is to increase the Mach number at which a launch vehicle is staged from a carrier aircraft. Without exceeding the engine and airframe design limits, the pre-compressor cooling technology allows an operational aircraft to operate at Mach numbers and altitudes beyond its basic operational limits. This is an essential, near-term technology for reducing launch cost to place small-weight payloads in low Earth orbit. The advantage of this technology is assessed with a modified McDonnell Douglas QF-4C aircraft. Payloads are unachievable or marginal with an unmodified QF-4C. However, payloads weighing around 150 pounds are plausible with this aircraft when incorporating the water injection pre-compressor cooling (WIPCC) technology.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference44 articles.

1. Carter P. , Balepin V. , Spath T. and Ossello C. MIPCC Technology Development, AIAA-2003-6929.

2. Morring F. Jr , More With Less, Aviation Week & Space Technology, 30 July 2012.

3. Balepin V. Method and Apparatus for Reducing the Temperature of Air Entering a Compressor of a Turbojet Engine by Variably Injecting Fluid into the Incoming Air, United States Patent US 6,202,404, 20 March 2001.

4. DARPA Industry Day Notice, Airborne Launch Assist Space Access (ALASA), DARPA-BAA-12-07.

5. King L.D. Design and Testing of a Pre-Compressor Cooling System for a High Speed Aircraft, Chase Vought Corporation, Vought Aeronautics Division, May 1961, AD324250.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3