Crevasse initiation and history within the McMurdo Shear Zone, Antarctica

Author:

Kaluzienski Lynn,Koons Peter,Enderlin Ellyn,Hamilton Gordon,Courville Zoe,Arcone Steven

Abstract

AbstractWhile large-scale observations of intensified fracture and rifting can be observed through remote-sensing observations, understanding crevasse initiation may best be achieved with small-scale observations in which crevasses can be directly observed. Here we investigate the kinematic drivers of crevasse initiation in the McMurdo Shear Zone (MSZ), Antarctica. We delineated 420 crevasses from ~95 km of 400 MHz frequency ground-penetrating radar data and compared these data with kinematic outputs derived from remotely-sensed ice surface velocities to develop a statistical method to estimate crevasse initiation threshold strain rate values. We found the MSZ to be dominated by simple shear and that surface shear strain rates proved best for predicting crevasse features, with regions of higher shear strain rate more likely to have a greater number of crevasses. In the surveyed portion of our study region, values of shear strain rate and vorticity rate derived from the MEaSUREs2 velocity dataset range between 0.005–0.020 and 0.006–0.022 a−1, respectively, with crevasses located at ≥0.011 and ≥0.013 a−1. While threshold values from this study cannot be directly applied to other glacial environments, the method described here should allow for the study of shear margin evolution and assessment of localized damage and weakening processes in other locations where in situ data are available.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference36 articles.

1. Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture

2. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity

3. Subsurface crevasse formation in glaciers and ice sheets

4. Courville Z (2015) Overall shear zone report 2015. Contract report to National Science Foundation Office of Polar Programs Antarctic Infrastructure and Logistics Program.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3