Author:
Feszty D.,Badcock K. J.,Richards B. E.
Abstract
AbstractUnsteady spiked body flows were simulated by a second order time-accurate CFD method. Laminar, axisymmetric flow was considered at Mach 2.21 and Mach 6 freestreams and Reynolds’ numbers based on the blunt body diameter of 0.12 million and 0.13 million, respectively. A spiked forward facing cylinder with spike lengths between LID = 1.00 and LID = 2.40 was used as the model geometry. Following the numerical method’s verification, the individual flow modes of oscillation and pulsation were examined. The frequency of the events was found in good agreement with the experiment, while the pressure amplitudes were overpredicted in the Mach 6 cases. Analysis of the numerical results showed that the oscillation flow mode was driven by a viscous mechanism, whereas the pulsation by an inviscid one. The hysteresis phenomenon in the transition between the two flow modes was predicted qualitatively.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献