High resolution computation of compressible condensing/evaporating moist-air flow for external and internal flows

Author:

Hamidi S.,Kermani M. J.

Abstract

Abstract In this paper computation of high resolution, compressible condensing/evaporating moist-air flow for a series of two-dimensional internal and external flows is performed. It has been observed that the inflow wetness content can change the aerothermodynamics of the flow field, e.g. the shock angles. In the case of flow expansion through nozzles, it has also been observed that the content of wetness at nozzles exit in the case of moist-air is more than five times higher than that of pure steam under similar operating conditions. The reason is due to the internal flow of heat from steam portion toward air that accelerates the steam condensation rate. The solver is spatially third- and temporally second-order accurate. Validations of the numerical code are performed versus the experimental data of Moore et al (1973) in the case of very large humidity ratio, ω→∞ (pure steam). Also in the case of low humidity ratio, ω→0 (dry air), the exact solution of shock tube and wedge cases are used to validate our numerical results.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Operation Conditions on Condensation and Aerodynamic Shockwave in Supersonic Nozzle;2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2022-05-16

2. Numerical study of non-equilibrium condensation and shock waves in transonic moist-air and steam flows;Aerospace Science and Technology;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3