Dependence of radiated sound frequency on vortex core dynamics in multiple vortex interactions

Author:

Zheng Z. C.,Li W.

Abstract

Abstract With both theoretical analysis and measurement data, it has been identified previously that there exists a robust sound emission from a pair of counter-rotating aircraft wake vortices at the frequency of unsteady vortex core rotation. In a vortex system with multiple vortices, the sound emission frequency can be subjected to change because of interactions among the vortices. The behaviour of the influence, indicated by the ratio between the core size and the distance of the vortices and the underlining vortex core dynamic mechanisms, is investigated in this study. A vortex particle method is used to simulate the vortex core dynamics in two-dimensional, inviscid and incompressible flow. The flow field, in the form of vorticity, is employed as the source in the far-field acoustic calculation using a vortex sound formula. Cases of co-rotating vortices and a multiple-vortex system composed of two counter-rotating vortex pairs are studied for applications to aircraft wake vortex sound. The study shows, without vortex merging, individual frequencies can be clearly identified that are due each to core rotation (self induction) and co-rotating motion of a vortex centre around the other (mutual induction). The ratio of the core size and the distance between vortices does not seem to significantly influence the frequency of vortex core rotation. With vortex merging, a single frequency due to the merged vortex core is generated.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3