Energy partitioning in high speed impact of analogue solid rocket motors

Author:

Schonberg W. P.

Abstract

Abstract Modelling the response of solid rocket motors to bullet and fragment impacts is a high priority among the military services from standpoints of both safety and mission effectiveness. Considerable effort is being devoted to characterising the bullet and fragment vulnerability of solid rocket motors, and to developing solid rocket motor case technologies for preventing or lessening the violent responses of rocket motors to these impact loadings. Because full-scale tests are costly, fast-running analytical methods are required to characterise the response of solid rocket motors to ballistic impact hazards. In this study, a theoretical first-principles-based model is developed to determine the partitioning of the kinetic energy of an impacting projectile among various solid rocket motor failure modes. Failure modes considered in the analyses include case perforation, case delamination, and fragmentation of the propellant simulant material. Energies involved in material fragmentation are calculated using a fragmentation scheme based on a procedure developed in a previous impact study utilising propellant simulant material. The model is found to be capable of predicting a variety of response characteristics for analogue solid rocket motors under high speed projectile impact that are consistent with observed response characteristics. Suggestions are made for improving the model and extending its applicability to a wider class of impact scenarios.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3