Author:
Allen C. B.,Rendall T. C. S.
Abstract
AbstractGeneric wrap-around shape optimisation technology is presented, and is applied to a helicopter rotor in hover, using compressible CFD as the aerodynamic model. An efficient domain element shape parameterisation method is used as the surface control and deformation method, and is linked to a radial basis function global interpolation, to provide direct transfer of domain element movements into deformations of the design surface and the CFD volume mesh. This method is independent of mesh type and size, and optimisation independence from the flow solver is achieved by obtaining sensitivity information for an advanced parallel gradient-based algorithm by finite-difference. The method is applied here to a two-bladed hovering rotor, with transonic tip speed, comparing the effects of global twist parameters and more local planform parameters. Significant torque reductions are achieved in both cases, and it is shown that using only three global twist parameters are extremely effective. Using 63 local and global parameters, large geometric changes are demonstrated, with both induced power and wave drag reduced.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献