Numerical prediction of transition boundary-layer flows using new intermittency transport equation

Author:

Higazy M. G.

Abstract

AbstractIn this paper, a new transport equation for the intermittency factor is proposed to model the transition flows. The intermittency behaviour of the transition flows is incorporated into the differential methods for solving the boundary-layer equations, which deal numerically with the basic partial differential equations. The present model accuracy and validity have been tested against a series of recent published experiments, for low Reynolds number, including flows with different freestream turbulence intensities and different pressure-gradients, such as aerofoil and flat plate flows. A comparison of the present method and two different prediction techniques is also given.The significance of the proposed transport intermittency equation is to reproduce the streamwise variation of the intermittency factor in the transition zone. This method is found suitable and reliable to predict flows with positive or favourable pressure-gradient cases and with turbulence intensity level up to 6%.The method also confirmed the importance of estimating the start of transition, present formula. The present formula is suitable and straightforward to use. For all test cases good agreement between the computed results and the experimental data are observed.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference31 articles.

1. Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation;Steelant;Int J Nume Methods Fluids,1996

2. Extension of Emmons’ spot theory to flows on blunt bodies;Chen;AIAA J.,1971

3. Blair, M.F. and Werle, M.J. Combined influence of free-stream turbulence and favourable pressure gradients on boundary-layer transition and heat transfer, 1981, United Technologies Research Center, Report R81-914388-17.

4. Suzen, Y.B. and Huang, P.G. An intermittency transport equation for modeling flow transition, 2000, AIAA Paper AIAA-2000-0287, 38th Aero space Sciences Meeting and Exhibit, Reno, NV, 10-13 January, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3