Applying heat pipes to a novel concept aero engine: Part 1 – Design of a heat-pipe heat exchanger for an intercooled aero engine

Author:

Camilleri R.,Ogaji S.,Pilidis P.

Abstract

Abstract Civil aviation has instilled new perceptions of a smaller world, creating new opportunities for trade, exchange of cultures and travelling for leisure. However, it also brought with it an unforeseen impact on the environment. Aviation currently contributes to about 3·5% of the global warming attributed from human activities. With the forecasted rate of growth, this is expected to rise to about 15% over the next 50 years. Although it is projected that the annual improvements in aircraft fuel efficiency are of the order of 1-2%, it is suggested that the current gas turbine design is fully exploited and further improvements are difficult to achieve. A new generation of aero engine core concepts that can operate at higher thermal efficiencies and lower emissions is required. One possibility of achieving higher core efficiencies is through the use of an inter-cooled (IC) core at high overall pressure ratios (OPR). The concept engine, expected to enter into service around 2020, will make use of a conventional heat exchanger (HEX) for the intercooler. This paper seeks to introduce a heat pipe heat exchanger (HPHEX) as an alternative design of the intercooler. The proposed HPHEX design takes advantage of the convenience of the geometry of miniature heat pipes to provide a reduction in pressure losses and weight when compared to conventional HEX. The HPHEX will be made of a number of stages, each stage being made of a large number of miniature heat pipes in radial configuration, that will extend from the inter-compressor duct to the bypass split, thus eliminating any ducting to and from the intercooler. This design offers up to 32% reduction in hot pressure losses, 34% reduction in cold pressure losses and over 41% reduction in weight.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference18 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3