Numerical and experimental investigation of tip leakage flow and heat transfer using idealised rotor-tip models at transonic conditions

Author:

Krishnababu S. K.,Hodson H. P.,Dawes W. N.,Newton P. J.,Lock G. D.

Abstract

Abstract The effect of tip geometry on discharge coefficient and heat transfer is investigated both experimentally and numerically using idealised models of an unshrouded rotor blade. A flat tip was compared with two squealer-type geometries (a cavity and suction-side squealer) under the transonic conditions expected in the gas turbine engine. Heat transfer measurements were performed using a transient liquid crystal technique while a duplicate test section was used for measuring the pressure field. Computations were carried out using an unstructured, fully compressible, three-dimensional RANS (Reynolds averaged Navier Stokes) solver. Initial computations performed using a low Reynolds number k-ε model demonstrated the inability of the model to predict the Nusselt number with reasonable accuracy. Further computations performed using a low Reynolds number k-ω model improved the predictions dramatically. The computed discharge coefficient and the average Nusselt number over the blade tip agreed well with the experiments. Three upstream-total to exit-static pressure ratios were used to create a range of engine-representative Mach numbers. Both experimental and numerical studies at the lower pressure ratio of 1·3 (exit Mach number ~ 0·65) established the cavity geometry as the best performer from an aerodynamic perspective by reducing the discharge through the tip. However, from the heat transfer perspective, both the peak Nusselt number and the average heat transfer to the tip were higher than the flat tip. At the higher pressure ratios of 1·85 and 2·27 (corresponding to exit Mach numbers ~ 0·98 and 1·12) the discharge coefficient and heat transfer to the tip increases. This paper explores the fluid dynamics associated with these flows and shows that the highest heat transfer is caused by reattachment and flow impingement. The fluid dynamic computations provide insight into the experimental measurements and were successfully compared with simple analytical models.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerodynamic topology optimization on tip configurations of turbine blades;Journal of Mechanical Science and Technology;2021-06-29

2. Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss;Journal of Turbomachinery;2013-06-26

3. Tip-Leakage Losses in Subsonic and Transonic Blade Rows;Journal of Turbomachinery;2012-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3