Two dimensional direct numerical simulation of nonreacting confined supersonic mixing layer

Author:

Chakraborty D.,Mukunda H. S.,Paul P. J.

Abstract

AbstractDirect Numerical Simulation (DNS) results are presented for high speed nonreacting mixing layer in a confined test section. The hyper-velocity mixing layer experiment of Erdos et al with H2/N2 stream is simulated by discretizing two dimensional Navier Stokes equation using a higher order (fourth order spatial and second order temporal) compact numerical algorithm. A favourable comparison of the computation with experimentally measured wall static pressure forms the basis of further analysis. Instantaneous flow picture and the mean profiles of various flow variables were examined to determine the development and general characteristics of the confined mixing layer. It has been found that the growth of the mixing layer is towards the high speed side of the layer. Various turbulence quantities were derived from the stored time series data of the DNS calculation and the results were compared with the experimental results of supersonic free shear layer as no experimental results of turbulence statistics are available for the confined hypervelocity mixing layer. The increasing Reynolds stress data with the flow direction indicate that the turbulence is sustained by transferring the energy from the mean flow to the fluctuating field as the shear layer develops. Although the Reynolds stress is negligible in the most portion of the wall boundary layers, effect of counter gradient effect is observed in the far downstream location of the lower wall boundary layer. The general conclusion that for the supersonic mixing layer, various turbulence quantities like Reynolds stress, turbulence intensities (both streamwise and transverse) decrease with the increase in the convective Mach number is also confirmed by our results.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3