Abstract
AbstractCoupling an unsteady flow-solver with a structural model offers the opportunity to simulate aeroelastic behaviour of wings and rotor blades. The moving and deforming surfaces resulting from unsteady simulations require deforming meshes during the simulation, and it is common to use simple interpolation of surface displacements and velocities onto the initial undisturbed mesh. However, aeroelastic simulations can result in large displacements and deformations of solid surfaces, and simple interpolation of perturbations results in poor grid quality and possible grid crossover. A new interpolation technique is presented which is still simple in that it is driven solely by surface motion, but represents rotational effects near the solid surface, to maintain grid quality there. Furthermore, the scheme is fully analytic, so is very cheap computationally and results in grid speeds also being available analytically. Results, in terms of unsteady grid motion and flow solution, show the scheme to be effective and efficient.
Publisher
Cambridge University Press (CUP)
Reference33 articles.
1. Prananta, B.B. and Hounjet, M.H.L. Aeroelastic simulation with advanced CFD methods in 2D and 3D transonic flow June 1996, Proceedings RAeS conference on Unsteady Aerodynamics, London.
2. Generation of boundary-bonforming grids around wingbody configurations using transfinite interpolation;Eriksson;AIAA J,1982
3. Unsteady Euler algorithm with unstructured dynamic mesh for cornplex-aircraft aerodynamic analysis;Batina;AIAA J,1991
4. Allen, C.B. Efficient use of an upwind Euler code for multi-bladed rotor design June 1999, AIAA Paper 99-3227, Proceedings of 17th AIAA Applied Aerodynamics Conference, Norfolk, VA, pp 830–840.