Effects of sweep on the dynamics of active separation control

Author:

Pack L. G.,Seifert A.

Abstract

AbstractA series of active flow control experiments were recently conducted at high Reynolds numbers on a wall mounted ‘Hump’. The model simulates the upper surface of a 20% thick Glauert-Goldschmied type airfoil at zero incidence. The flow over the model is turbulent since the tunnel sidewall boundary-layer flows over it, eliminating laminar-turbulent transition from the problem. The main motivation for the experiments was to generate a comprehensive data base for validation of unsteady numerical simulation as a first step in the development of a design tool, without which it would not be possible to effectively utilise the great potential of unsteady flow control. This paper focuses on the dynamics of several key features of the baseline as well as the controlled two- and three-dimensional flows.It was found that the two-dimensional separated flow contains unsteady waves centered on a reduced frequency (Strouhal number based on the length of the separated region and free-stream velocity) of 0·8, while in the three-dimensional separated flow, reduced frequencies of 0·3 and 1·0 are active. Several scenarios of resonant wave interaction take place over the separated shear-layer and in the pressure recovery regions. The unstable reduced frequency bands for periodic excitation are centered on 1·5 and 5, but these reduced frequencies are based on the length of the baseline bubble that shortens due to the excitation. The conventional swept wing-scaling works well for the coherent wave features. Reproduction of these dynamic effects by a numerical simulation would provide benchmark validation.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference12 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3