Author:
BIENVENU LAURENT,CSIMA BARBARA F.,HARRISON-TRAINOR MATTHEW
Abstract
AbstractThe
$\Omega $
numbers—the halting probabilities of universal prefix-free machines—are known to be exactly the Martin-Löf random left-c.e. reals. We show that one cannot uniformly produce, from a Martin-Löf random left-c.e. real
$\alpha $
, a universal prefix-free machine U whose halting probability is
$\alpha $
. We also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real
$\alpha $
, one cannot uniformly produce a left-c.e. real
$\beta $
such that
$\alpha - \beta $
is neither left-c.e. nor right-c.e.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. A Theory of Program Size Formally Identical to Information Theory
2. [4] Bienvenu, L. and Downey, R. , Kolmogorov complexity and Solovay functions, Symposium on Theoretical Aspects of Computer Science (STACS 2009), Dagstuhl Seminar Proceedings, 09001, Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, 2009, pp. 147–158.
3. Computability and Randomness
4. Solovay functions and their applications in algorithmic randomness
5. On universal computably enumerable prefix codes
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献