A MINIMAL SET LOW FOR SPEED
-
Published:2022-01-03
Issue:4
Volume:87
Page:1693-1728
-
ISSN:0022-4812
-
Container-title:The Journal of Symbolic Logic
-
language:en
-
Short-container-title:J. symb. log.
Author:
DOWNEY ROD,HARRISON-TRAINOR MATTHEW
Abstract
AbstractAn oracle A is low-for-speed if it is unable to speed up the computation of a set which is already computable: if a decidable language can be decided in time
$t(n)$
using A as an oracle, then it can be decided without an oracle in time
$p(t(n))$
for some polynomial p. The existence of a set which is low-for-speed was first shown by Bayer and Slaman who constructed a non-computable computably enumerable set which is low-for-speed. In this paper we answer a question previously raised by Bienvenu and Downey, who asked whether there is a minimal degree which is low-for-speed. The standard method of constructing a set of minimal degree via forcing is incompatible with making the set low-for-speed; but we are able to use an interesting new combination of forcing and full approximation to construct a set which is both of minimal degree and low-for-speed.
Publisher
Cambridge University Press (CUP)