SURREAL ORDERED EXPONENTIAL FIELDS

Author:

EHRLICH PHILIP,KAPLAN ELLIOT

Abstract

AbstractIn 2001, the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\mathbf {No}}$ of surreal numbers was brought to the fore by the first author and employed to provide necessary and sufficient conditions for an ordered field (ordered $K$ -vector space) to be isomorphic to an initial subfield ( $K$ -subspace) of ${\mathbf {No}}$ , i.e. a subfield ( $K$ -subspace) of ${\mathbf {No}}$ that is an initial subtree of ${\mathbf {No}}$ . In this sequel, analogous results are established for ordered exponential fields, making use of a slight generalization of Schmeling’s conception of a transseries field. It is further shown that a wide range of ordered exponential fields are isomorphic to initial exponential subfields of $({\mathbf {No}}, \exp )$ . These include all models of $T({\mathbb R}_W, e^x)$ , where ${\mathbb R}_W$ is the reals expanded by a convergent Weierstrass system W. Of these, those we call trigonometric-exponential fields are given particular attention. It is shown that the exponential functions on the initial trigonometric-exponential subfields of ${\mathbf {No}}$ , which includes ${\mathbf {No}}$ itself, extend to canonical exponential functions on their surcomplex counterparts. The image of the canonical map of the ordered exponential field ${\mathbb T}^{LE}$ of logarithmic-exponential transseries into ${\mathbf {No}}$ is shown to be initial, as are the ordered exponential fields ${\mathbb R}((\omega ))^{EL}$ and ${\mathbb R}\langle \langle \omega \rangle \rangle $ .

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference49 articles.

1. [8] Bagayoko, V. and van der Hoeven, J. and Mantova, V. , Defining a surreal hyperexponential, Preprint, 2020, https://hal.archives-ouvertes.fr/hal-02861485.

2. Logarithmic-Exponential Power Series

3. A generalization of the Tarski-Seidenberg theorem, and some nondefinability results;van den Dries;American Mathematical Society,1986

4. Fields of surreal numbers and exponentiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration on the surreals;Advances in Mathematics;2024-08

2. The Absolute Arithmetic Continuum and Its Geometric Counterpart;Handbook of the History and Philosophy of Mathematical Practice;2024

3. SURREAL ORDERED EXPONENTIAL FIELDS – ERRATUM;The Journal of Symbolic Logic;2022-03-09

4. The Absolute Arithmetic Continuum and Its Geometric Counterpart;Handbook of the History and Philosophy of Mathematical Practice;2022

5. The Absolute Arithmetic Continuum and Its Geometric Counterpart;Handbook of the History and Philosophy of Mathematical Practice;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3