NOTES ON SOME ERDŐS–HAJNAL PROBLEMS

Author:

KOMJÁTH PÉTER

Abstract

AbstractWe make comments on some problems Erdős and Hajnal posed in their famous problem list. Let X be a graph on $\omega _1$ with the property that every uncountable set A of vertices contains a finite set s such that each element of $A-s$ is joined to one of the elements of s. Does then X contain an uncountable clique? (Problem 69) We prove that both the statement and its negation are consistent. Do there exist circuitfree graphs $\{X_n:n<\omega \}$ on $\omega _1$ such that if $A\in [\omega _1]^{\aleph _1}$ , then $\{n<\omega :X_n\cap [A]^2=\emptyset \}$ is finite? (Problem 61) We show that the answer is yes under CH, and no under Martin’s axiom. Does there exist $F:[\omega _1]^2\to 3$ with all three colors appearing in every uncountable set, and with no triangle of three colors. (Problem 68) We give a different proof of Todorcevic’ theorem that the existence of a $\kappa $ -Suslin tree gives $F:[\kappa ]^2\to \kappa $ establishing $\kappa \not \to [\kappa ]^2_{\kappa }$ with no three-colored triangles. This statement in turn implies the existence of a $\kappa $ -Aronszajn tree.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference7 articles.

1. Trees, subtrees and order types

2. Colouring without triangles and partition relation

3. Mitchell: Aronszajn trees and the independence of the transfer property;William;Annals of Pure and Applied Logic,1972/1973

4. Unsolved and solved problems in set theory

5. Unsolved problems in set theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3