Discrete polar cap aurora observed from Spitsbergen

Author:

Simmons D.A.R.,Henriksen K.

Abstract

ABSTRACTDiscrete auroral arcs frequently bridge the polar cap connecting the morning and evening sectors of the auroral oval along the line of the transpolar (electron) current. Very high-latitude stations that lie wholly within the oval during the earth's diurnal rotation pass under this bridge twice a day, giving morning and evening maxima. Stations at slightly lower latitudes on Spitsbergen lie within the oval in the evening but under, or even south of, the oval in the morning. From such stations the evening, but not the morning, maximum is readily observed. This study is primarily concerned with the orientation of discrete polar cap arcs in the evening skies over Spitsbergen. It shows that the geomagnetic alignment of these arcs is latitude-dependent between geomagnetic colatitudes 6 to 20°N. At the highest latitudes within this range, the arcs are in transpolar alignment, whereas at the lowest latitudes within the polar cap, they are oval-aligned. At intermediate latitudes, the arcs are observed in transitional phases between transpolar and ovalalignment. The solar alignment of discrete polar cap arcs is a function of corrected geomagnetic local time. In the early afternoon, solar alignment is poor but this gradually improves throughout the late afternoon until there is excellent alignment at the time of the evening maximum. Recent satellite studies of plasma convection in the polar ionosphere have helped to explain some of the visual characteristics of discrete polar cap aurora observed from Spitsbergen, particularly the irregular alignment of arcs in the region of the Harang discontinuity.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Ecology,Geography, Planning and Development

Reference31 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3