Arctic and sub-Arctic soil emissions: possible implications for global climate change

Author:

Christensen Torben

Abstract

AbstractClimate models predict a substantial warming at high latitudes following the enhanced greenhouse effect caused by anthropogenic emissions of carbon dioxide (CO2), methane (CH4), and various other trace gases. Arctic and sub-Arctic soils contain large amounts of organic carbon that could be made increasingly available for decomposition in a wanner climate due to deepening of the biologically-active layer and increased thermokarst erosion. This produces the potential for increased emissions of CO2 and CH4 from tundra areas and thus positive (enhancing) feedback effects on the greenhouse effect. From being a net absorber of CO2 the global tundra areas could become a net source of up to 1.25 Gt C yr1 as a result of the predicted warmer and dryer conditions during the thaw period. CH4 is at least 21 times more effective as a greenhouse gas than CO2. How the CH4 balance in the tundra will respond to climate change is therefore very important but also much less certain. Estimates of total present CH4 emissions from northern wetlands vary greatly, ranging from 2.4 to 106 Tg CH4 yr1 and little is known about the mechanisms controlling the flux. There are indications, however, that if the tundra becomes wetter under warming, CH4 emissions would probably increase. If it becomes dryer, the emissions could cease or even turn the tundra into a sink for atmospheric CH4, partly due to increasing microbial consumption of CH4 in the soil. There is an urgent need for more research into the processes controlling the CH4 flux in Arctic and sub-Arctic soils.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Ecology,Geography, Planning and Development

Reference29 articles.

1. Consumption of atmospheric methane by tundra soils

2. A methane flux time series for tundra environments

3. In situ Methane Production from Acid Peat in Plant Communities with Different Moisture Regimes in a Subarctic Mire

4. Roulet N. , Moore T. and Lafleur P. 1990. Northern fens, CH4 flux and climate change. Unpublished manuscript in author's possession.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3